Survey and Analysis of the National Security
High Performance Computing Architectural Requirements

4 June 2001

Richard Games, Ph.D.
rg@mitre.org

The MITRE Corporation
Bedford, MA 01730

Approved for public release; distribution unlimited

Review of this Material does not imply Department of Defense
Endorsement of Factual Accuracy or Opinion.

EXECUTIVE SUMMARY

Are current high performance computers (HPCs) that use commodity microprocessors
(“commodity HPCs”) adequate for national security applications? Or is there a critical
need for traditional vector supercomputers? These were the overarching questions of a
quick-reaction survey conducted by the author during the first two weeks of April 2001.
The Deputy Under Secretary of Defense for Science and Technology commissioned the
survey to help understand the national security issues associated with Cray Inc.’s request
to the United States Department of Commerce to lift the import duty on Japanese vector
supercomputers. This report contains the analysis of the survey results along with
recommendations.

There are no simple answers to these two questions. At the minimum the answers depend
on the specific application area. The author conducted face-to-face interviews with
multiple users and software developers in 10 high performance computing application
areas, including support to research and development, acquisition, and operations.
Operational support ranged from “off-line” predictive analysis for planning purposes to
“on-line” applications such as weather prediction, surveillance, and reconnaissance.

Based on the interviews conducted, the overall assessment was that commodity HPCs are
providing useful capability in all areas surveyed except for the cryptanalysis area. Over
the last five years there has been a major investment made by the national security
community to retool legacy vector-supercomputer software to run on commodity HPCs.
As a result, these systems are in high demand by the national security community.

Although commodity HPCs are producing useful results, in almost every case there were
significant issues identified with their use. These issues included the negative impact that
their difficult programming environments are having on researchers and system
developers and the inefficiency in many cases of the actual processing due to a serious
processor-memory communications bottleneck. The real value of this survey came from
the insights gained from the discussions of the challenges that national security users and
software developers face because of the current HPC technology base.

The bottom line for the national security community reduces to the interrelated issues of
productivity and affordability. How productive are the researchers/developers that write
the high performance software? How productive (efficient) are the HPCs that run the
software? What does it cost? Included in the total cost are the facilities and the
operational risks associated with the reliability of larger less-efficient installations.
Perhaps the hardest cost to quantify is the “opportunity lost” when a domain researcher
spends time on complicated computer programming rather than on creating new science.

A number of recommendations are made to increase the flexibility and performance of
future national security HPC options. These include assessing the impact of current state-
of-the-art Japanese vector supercomputers, promulgating the software best practices
identified during the survey, and initiating a pragmatic R&D program to improve the
productivity of HPCs for national security applications.

Approved for public release; distribution unlimited 1

ACKNOWLEDGMENTS

John Grosh, Charles Holland, and Mark Norton from the Office of the Secretary of

Defense provided valuable support during the course of the survey. Many members of the
national security community who participated in the survey took time off from their busy
schedules to discuss their current and past experiences with high performance computers.

Approved for public release; distribution unlimited 2

1. INTRODUCTION

The national security community uses high performance computers (HPCs) as fools for
performing research and development; for supporting the acquisition process, including
test and evaluation; for training; and for operations. Operational support ranges from
“off-line” predictive analysis for planning purposes to “on-line” applications such as
weather prediction, signal and image processing for intelligence, surveillance, and
reconnaissance (ISR), or as a component of a weapon system.

An HPC’s value depends on how well it performs the target applications. A number of
performance factors are involved: delivering correct answers in the time desired/required
(wall-clock time to solution), being reliable, being easy to program, being cost effective,
and in some cases, meeting size, weight, and power constraints.

Computer architecture refers to how a system’s components such as processors, memory,
internal networks, and input/output devices are combined into a single computing
resource. The compatibility between the computer architecture and the target application
is one factor that determines how well the HPC performs. This paper reports on the
results of a “quick-reaction” survey to assess the compatibility of current commercial
HPC architectures for performing national security applications.

The overarching question considered was whether current commercial HPCs that use
commodity microprocessors are adequate for national security applications? Or whether
there is a critical need for traditional vector supercomputers? The survey was motivated
by the request by Cray Inc. to the Department of Commerce to lift the import duty on
Japanese vector supercomputers'. Cray plans to resell NEC vector supercomputers in the
United States and elsewhere while it completes the development of its next-generation
SV-2 vector supercomputer. The Department of Defense (DOD) is currently co-investing
in the development of the SV-2.

The next section provides a brief overview of current HPC options and provides a brief
historical context. Section 3 introduces performance metrics needed in the subsequent
application assessments. Section 4 describes the survey methodology and lists the
national-security applications covered. Section 5 summarizes the overall national-security
application/HPC-architecture assessment. Section 6 discusses the general findings of the
survey, and Section 7 concludes with recommendations. Appendix A contains the
questions used to conduct the interviews. Appendix B contains more detailed information
on the specific applications covered, including the organizations that participated in the
survey. Appendix C contains a copy of the memorandum that initiated the study.

' The Commerce Department lifted the duty on 3 May 2001.

Approved for public release; distribution unlimited 3

2. HPC BACKGROUND

For the purpose of this assessment, HPC architectures can be organized along the two
dimensions shown in Figure 1: processor type and programming model supported.
Systems based on custom vector processors will be referred to as vector supercomputers.
These include systems from Cray Research (YMP, C90, T90, SV-1), Cray Inc. (SV-2),
NEC (SX-5), and Fujitsu (VPP 5000).

Systems that incorporate commodity microprocessors will be referred to as commodity
HPCs. These include systems from Compaq, Hewlett Packard, IBM, SGI, Sun, and a
variety of Windows-Intel (WINTEL) vendors. In addition to servicing technical users,
these companies compete in the desktop and server marketplace for database and internet
applications where price/performance competition is especially keen. Clustering these
desktop or small servers using commodity or high-performance networks and open
source system software (e.g., Linux) is an important recent trend in this category intended
to reduce the cost of high performance computing.

Processor Type

. Custom Vector Microprocessor
Pro%rammlng
Model
. Symmetric
arallel Multiprocessors
Shared-Memory Vector Distributed Shared
Multi-Processing Memory
OpenMP
Cray YMP, C90, T90, | Compagq, HP, IBM,
SV-1, SV-2, NEC SX-5| SGI, Sun, WINTEL
Massively
Distributed-Memo Parallel
Multi-Computin i Seglable Processors
puting Vector :
Message Passing Interface Cgm’:t:?;ty
Cray SV-2, NEC SX-5,| Cray T3E, IBM SP3,
Fujitsu VPP 5000 SGI 03K
Vector Commodity
Supercomputer HPC

Figure 1. High Performance Computer Architectures

The second dimension shown in Figure 1 concerns how parallel computers are
programmed. In the shared-memory model, all processors share and have access to a
common memory space, a single operating system schedules tasks on the multiple
processors, and compiler technology exists to implement “loop-level” parallelism through
programmer-supplied directives. This support reduces the complexity of parallel
programming, but it is only effective on systems with a modest number of processors
(generally 10s of processors).

Approved for public release; distribution unlimited 4

The upper two quadrants of Figure 1 provide examples of both vector supercomputers
and commodity HPCs that support the shared-memory model. The emergence of the
OpenMP compiler directive standard makes it possible today to easily port shared-
memory code amongst the various options (within each and horizontally between the
upper two quadrants in Figure 1). However, architecture-specific software optimizations
may still be required for either the vector processors or cache-based microprocessors.

In the distributed-memory model, each processor has its own memory space and
operating system. Data in a remote processor’s memory is accessed by explicitly sending
messages between processors. Writing message-passing software can be complex, but
can be effective on systems with a large number of processors (generally 100s to 1000s
of processors).

The lower two quadrants in Figure 1 provide examples of both vector supercomputers
and commodity HPCs that support the distributed-memory model. The emergence of the
Message Passing Interface standard makes it easy to port distributed-memory code
amongst the various options (within each and horizontally between the lower two
quadrants in Figure 1). However, architecture-specific software optimizations may still be
required for either the vector processors or cache-based microprocessors.

The current high-end computing situation can be summarized using Figure 1. Legacy
HPC applications used compiler directives on shared-memory parallel vector
supercomputers (upper left-hand quadrant). As commodity HPCs with distributed
memory began to emerge in the early 1990s, applications began to be ported (or written
from scratch) using message passing to run on these systems (lower right-hand quadrant).

These “diagonal” ports in Figure 1 were expensive multiyear software efforts and
significantly increased the complexity of the HPC software base. By the mid-to-late
1990s the number of these “diagonal” porting activities increased as state-of-the-art
vector supercomputers became unavailable in the US market. Today, the vast majority of
high-end U.S. national-security software is based on the distributed-memory model, with
a corresponding increase in software effort to maintain and evolve.

The capability of shared-memory commodity HPCs has improved considerably in the
recent past. The appearance of distributed-memory hardware architectures that logically
support the compiler-based shared-memory programming model (e.g., the SGI Origin
and HP Exemplar) was an especially significant development. In many lower-end
applications, this trend is obviating the need to switch to the distributed memory model.

Approved for public release; distribution unlimited 5

3. PERFORMANCE METRICS

One way to assess how efficiently a computer is performing an application is to measure
the rate that useful work is being performed. Often the application’s workload can be
measured in terms of the number of floating-point or fixed-point operations that need to
be performed. Given the time to solution, it is then possible to calculate the average
sustained processing rate. An efficiency metric is obtained by comparing this sustained
processing rate to the theoretical peak-processing rate of the processor”.

For simplicity, only floating-point operations (flop) will be considered in this report. If F
equals the number of flop a computation requires, and if #(1) is the time to solution (in
seconds) on one processor, then the processor sustains on the average S(1) = F/«(1) flop/s.
If P(1) is the theoretical peak flop/s rate of a single processor, then the sustained
processor utilization for a single processor is defined as u(1) = S(1)/P(1) (usually
expressed as a percentage). A low sustained processor utilization can occur for a variety
of reasons, including possibly a mismatch between the computer’s architecture and the
requirements of the application.

A second performance metric of interest is the parallel efficiency. 1deally, if the number
of processors is doubled, then the time to solution should be halved. However, such
perfect speedup is rarely achieved because of the lack of application parallelism or the
overhead of communicating data between processors. If #(n) is the time to solution when
n processors are used, then the n processor speedup is defined as speedup(n) = t(1)/t(n).
Parallel efficiency for n processors is defined as par_eff(n) = speedup(n)/n (usually
expressed as a percentage). Parallel efficiency of less that 100 percent reduces the
sustained processor utilization for the n-processor system: u(n) = [F/t(n)]/[nP(1)] = u(1) X

par_eff(n).
Two kinds of parallel speedups are common:

1. Fixed-problem speedup: the problem size is fixed as the number of processors is
increased. The decrease in the time to solution is measured. Fixed-problem speedup is
the most common metric in operational uses where the time to solution must meet an
external constraint.

2. Scaled-problem speedup: the problem size is increased as the number of processors is
increased. The increase in the time to solution over the predicted time (usually
constant) is measured. Scaled-problem speedup is often employed to assess R&D
uses where “bigger (more resolution) is better,” and machine size is only constrained
by resource availability (in competition with other R&D users).

Both the sustained processor utilization and the parallel efficiency performance metrics
are well known in the HPC community. However, obtaining data for sustained processor
utilization during the course of the survey proved difficult as most users and some

* Users of HPCs are primarily interested in the time to solution and not this efficiency metric. However for
the purpose of assessing architecture compatibility knowledge of this efficiency metric is essential.

Approved for public release; distribution unlimited 6

developers interviewed do not keep track of this metric. On the other hand, parallel
efficiencies (usually based on scaled-problem speedup) were easy to obtain and for the
most part were quite high. But unfortunately a high “parallel efficiency” does not imply a
parallel system is processing efficiently in terms of sustained processor utilization.

Many legacy HPC applications ran on shared-memory parallel vector supercomputers
with sustained processor utilization in the range of 50 percent. On current commodity
HPCs, the sustained processor utilization for these same applications often dropped to the
range of 10 percent (or less) because of the current processor-memory communications
bottleneck in these systems. The relative price per sustained flop/s (or Mflop/s or
Gflop/s) for each of the processing options is crucial in determining which is ultimately
more affordable.

Approved for public release; distribution unlimited 7

4. SURVEY METHODOLOGY

The author conducted face-to-face interviews with HPC users and software developers
from across the national-security community during the period 2-13 April 2001. DOD
representatives scheduled most of the interviews. Some of the people interviewed were
identified during the interview process.

Each interview covered the following topics:

1. Personal background

2. HPC applications and national security impact
3. Software description

4. Typical performance

5. Portability and porting

6. Current architectural limitations

Each topic was explored in depth using a series of questions that were developed in
coordination with DOD representatives. Appendix A contains these questions.

The application areas covered were:

1. Operational weather and ocean forecasting

2. Planning activities for dispersion of airborne/waterborne contaminants
3. Engineering design of large aircraft, ship, and structures

4. Weapon (warheads and penetrators) effect studies

5. Improved armor design

6. Cryptanalysis

7. Survivability/stealthiness design

8. Intelligence, reconnaissance, and surveillance

9. National missile defense

10. Test and evaluation

Although a considerable number of application areas and research groups were involved
in the two-week survey, the survey only represented a small (non-scientific) sampling by
one person of the national security HPC community. Furthermore each application area
could not be surveyed to the same depth. The number of people surveyed in each area is a
rough indicator of the depth achieved. Finally, by design, the survey only involved
groups from the DOD and Intelligence communities and did not involve the national
security applications in the Department of Energy—although some of the codes
considered are used by both communities.

Approved for public release; distribution unlimited 8

5. SUMMARY ASSESSMENT

There are no simple answers to the two questions of whether current commodity HPCs
are adequate for national security applications, or whether there is a critical need for
traditional vector supercomputers. At the minimum the answer is application dependent.
Figure 2 shows the overall assessments of the 10 application areas surveyed. A “red-
yellow-green” indicator summarizes the assessment for each application area. Green
indicates that commodity HPCs are providing needed capability. Yellow indicates that
there are significant issues with the use of commodity HPCs, but generally they are
providing the needed capability. Red indicates a serious problem with the use of
commodity HPCs.

@® serious problem with using commodity HPCs
Assessment |[Q® Some issues with using commodity HPCs
© Commodity HPCs providing capability

Overall Applications # People Issues
© Operational weather and ocean 16 Results not state of the art
forecasting Dilution of research
© Planning activities for dispersion @® Lack crises response
of airborne/ waterborne 5 ® Want access to vector SC

contaminants (CBRN)
© Engineering design of large

@ Actively seeking foreign

aircraft, ship, and structures 6 access to vector SC

© Weapon (warheads and 3 @ Grand challenges take
penetrators) effect studies months

© Improved armor design 2 ® Grand challenges take mths

@® Cryptanalysis 8 @ Dilution of research

@ Survivability/stealthiness design 2 ® New fast algorithms

C Irr;tceglr:%irilsc:;::ervenIIance, 5 @ Accelerators needed

© National missile defense 5

© Test and Evaluation 2 @ Accelerators needed

Figure 2. Summary Assessment

Based on the interviews conducted, the overall assessment of each application area was
judged to be “green” except for cryptanalysis, which was judged to be “red.” However,
in every case but one there were significant issues identified with the use of commodity
HPCs. Whether or not these individual issues “integrate” up to turn the overall area
assessment from green to yellow to red is obviously a judgement that is subject to many
factors. So it is important to look beyond the single color assigned to each application
area. Rather the value of this survey comes from the insights gained from the one-on-one
discussions of the challenges that national security users and software developers face
because of the current HPC technology base. This section discusses these issues for each
of the ten applications surveyed. Appendix B provides additional background
information, including the organizations interviewed for each application area.

Approved for public release; distribution unlimited 9

The weather and ocean forecasting application area is representative of what has
happened in many computational fluid dynamics (CFD) applications over the last 10
years as researchers in the US have moved from the Cray vector supercomputers to
commodity HPCs. The end result is that researchers, who were used to using Fortran
codes that incorporated simple compiler directives for multitasking, have had to focus
considerable time and attention on the programming complexities of distributed-memory
MPI software development.

In the case of the weather and ocean forecasting groups interviewed, the transition from
shared-memory to distributed-memory programming was very difficult and required
significant resources over a three year period. These software porting projects were
supported by the DOD HPC Modernization Program’s Common High Performance
Computing Software Support Initiative (CHSSI) and other Department of Energy and
NASA sources. The efficiency of the converted codes has suffered because of the
memory-processor bottleneck in commodity HPCs and the “fine grain” nature of the CFD
applications.

In the case of one very-regular spectral global weather model, the sustained processor
utilization dropped from the range of 40 percent — 45 percent on a 6 processor C90 to
between 10 percent — 15 percent on a 60 processor SGI Origin 3000. In a more
complicated meso-scale model that uses nested grids, comparative utilization figures
from the C90 to the Origin 3000 were not available. However, this code maintained both
the legacy OpenMP and more current MPI versions in a single code base, so such
comparisons could be supported on current alternatives. In a wave modeling case the MPI
port failed because, according to the researcher, multiple resolution grid nesting resulted
in load balancing problems. This wave forecasting code runs operationally using
OpenMP on a 4-to-8 processor Cray SV 1. Research in this case is conducted on an Origin
3000 using shared memory and OpenMP, where performance flattens at around 24-32
processors.

However, the scaled-problem speedup of the majority of the new MPI codes is quite
good. Rules of thumb like “use 200 grid points per processor” indicate how to scale the
problem size as the number of processors increase to maintain performance. There is no
doubt that available commodity HPCs will deliver the processing rates on the new MPI
codes to satisfy the current operational forecast latency requirements. Also, the
switchover to scalable and ever-improving commodity HPCs will enable the inclusion in
the operational system of computationally-expensive model enhancements that could not
be incorporated operationally because of the recent unavailability of state-of-the art
vector supercomputers. Hence, the overall assessment for this area is “green.”

As researchers have worked with the new distributed-memory programming approach,
their “comfort level” has increased. However model enhancements will mean evolving
these MPI codes, and this will continue to require investment by the weather and ocean
modeling researchers in computer science activities rather than their science (the yellow
“dilution of research” issue). Some of the user and developer groups interviewed get help
by collaborating with experts at HPC centers, but they do not have the manpower or skill

Approved for public release; distribution unlimited 10

base to do anything extra (e.g., software configuration management or maintaining hybrid
OpenMP and MPI codes) that would enhance future software flexibility.

Another data point that bears on the suitability of current commodity HPCs is the oft-
cited assessment that the “Europeans are five years ahead” in the weather forecasting
area. In more concrete terms, the accuracy of the European 3-day typhoon forecast is
gauged to be equivalent to our 2-day forecast. While not the only factor, European access
to modern (Japanese) vector supercomputers has given them considerably more
computing power over the last four years, and the relative ease of programming has
meant the European weather researchers have been concentrating more on their weather
science and less on computer science. This lack of state-of-the-art results could have
potential negative national security impact, and as an isolated issue is judged to be in the
“red” category. This is one example of the research “opportunity cost” of the current state
of computing affairs for US national security researchers.

Planning activities for dispersion of airborne/waterborne contaminants also involves
CFD. The models one group is employing use unstructured adaptive grids, and this
significantly increases the complexity of the programming. The overall assessment is
“green” because commodity HPCs are providing useful results to planning activities for
military operations, intelligence gathering, counter-terrorism, and treaty monitoring. In
one planning case there is a 10-hour timing requirement, which commodity HPCs are
meeting.

As is common with such CFD applications, a larger commodity HPC would not
necessarily produce useful speedup on a fixed problem size. Thus, if the scenario
switched from planning to responding to an actual terrorist event, the current models
running on commodity HPCs would not help in a low-latency crises situation (hence the
“red” assessment). What is clearly needed is a more efficient computing solution, and the
research group involved is exploring access to Japanese vector supercomputers through
Cray Inc.

Engineering design of aircraft, ships, and other structures involves both
computational structural mechanics (CSM) and CFD. Groups interviewed are using CSM
to design safer military and embassy buildings as well as to perform forensic analysis
after terrorist bomb attacks. CFD is being used to model the flow fields around aircraft to
augment wind tunnel experiments. All codes considered had been ported using MPI over
a 2 — 3 year period, often by development groups other than the ultimate users.

Users of third party CSM/CFD MPI codes are major consumers of cycles at DOD
HPCMP facilities. Their reliance on scaled-problem speedup for their research activities
would fill up any computational resource for as long as they could gain access. As far as
the users interviewed are concerned, commodity HPCs are providing the needed
capability for their research and hence the “green” assessment. In fact, their most
significant concern appeared to be the queuing delays currently encountered to gain
access to available commodity HPCs.

Approved for public release; distribution unlimited 11

However, the users of third party codes interviewed tended to have no idea how
efficiently (in terms of sustained processor utilization) commodity HPCs run their CSM
and CFD jobs, or what the potential for improving their research productivity would be if
the codes could run more efficiently. One of the more sophisticated development groups
interviewed had experience running their CFD codes on both current Japanese vector
supercomputers and commodity HPCs and reported up to a 25 times difference in
sustained processor utilization: 50 percent on a vector supercomputer versus 2 percent —
10 percent on a commodity HPC. Their codes use unstructured meshes and adaptive
mesh refinements during run time. In addition, the use of complicated physics in multiple
domains poses load balancing challenges for distributed memory. These developers,
unhappy with the programming complexity of MPI and the performance of commodity
HPCs, are actively seeking access to Japanese vector supercomputers.

The areas of weapon (warhead/penetrators) effect studies and improved armor
design uses computational mechanics to understand complex projectile-target
interactions. CFD is also used for modeling flight dynamics of missiles and projectiles.
Again, the vast majority of these applications have been ported using MPI (by third
parties) to run on commodity HPCs. Again, these users are big consumers of cycles at
DOD HPCMP facilities. One research group reported that their “grand challenge”
computations take months to run on commodity HPCs. So although the overall
assessment is “green,” the same (“yellow”) issues of processing efficiency and research
productivity occur, but magnified by the length of time these high-priority applications
are allowed to run.

One group reported a CFD application that used shared memory and OpenMP on
symmetric multiprocessors and the Origin 3000 with up to 64 processors. The use of
scalable shared-memory commodity HPC technology to defer the switch over to more
complicated message passing is something to consider today. This approach was
successful in this case in part because the group had an expert programmer who spent
considerable effort to optimize the sequential version of the code on cache-based
microprocessors. Not every research group has such a “guru.”

Because their global-memory bandwidth is limited, commodity HPCs today do not
provide the needed capability for cryptanalysis (hence the “red” assessment). This same
conclusion was reached previously by a recent DSB Task Force. Quoting from the Report
of the DSB Task Force on DOD Supercomputing Needs, 11 October 2000:

The Task Force determined that the cryptanalysis application domain
has a critical requirement for HPCs with high-random-access-global-
memory bandwidth. There are three dimensions to this computing
requirement:

(1) therate of random access to global memory measured in
billions of updates/second (GUPYS)

(2) thesize of the global memory, and

(3) the ease of programming.

Approved for public release; distribution unlimited 12

The first two dimensions translate directly into application capability. The
third dimension bears on how easy it is to actually apply the computing
capability. In the case of research activities involving a domain expert,
even one with significant computer science skills, a difficult programming
environment can eliminate an otherwise capable system from
consideration. Ease of programming is also important for operational uses,
but it usually does not represent a “show stopper” since application
programs can be built to specification by a team of expert programmers.

The ease of programming factor is of concern due to the “dilution of research” issue
(“yellow’) mentioned previously.

In contrast to applications involving CFD and CSM, the area of survivability/
stealthiness design is distinguished by how efficiently commodity HPCs are working.
This area of computational electro-magnetics (CEM) uses a variety of solution
approaches. One popular approach uses the “method of moments” and reduces the
computation to solving a dense system of linear equations. This is the same
computational kernel as the LINPACK benchmark used in assessing the “Top 500
HPCs. There are both shared-memory and distributed-memory implementations that
deliver upwards of 70 percent — 80 percent sustained processor utilization on both vector
supercomputers and commodity HPCs for large-sized problems. This order n’ algorithm
has a high computation to communication ratio, and techniques exist to hide the latency
from the processor to memory. The only issue (assessed as “yellow”) is that current
DARPA research has produced a more efficient computational method for this
application and the implementation impact on processor efficiency is yet to be fully
assessed.

Commodity HPCs are used effectively today in many operational intelligence,
surveillance, and reconnaissance (ISR) applications as well as by the signal and image
processing research community to develop new exploitation techniques like automatic
target recognition. Many of these operational applications are embedded, for example,
forming synthetic aperture radar (SAR) images either at a ground station in the field or on
an airplane such as the U2 reconnaissance platform. As a result, this HPC application
community has naturally focused on the efficiency of its processing.

The history of U2 SAR image formation processing by one defense integrator is
representative. When the SAR image formation code was ported from a Cray YMP to an
SGI Power Challenge (MIPS R8000 processor), the eight-processor utilization dropped
from 50 percent to 16 percent. On the Origin 2000 containing the 195 MHz MIPS
R10000 processor with a 2/3 speed cache, the sustained processing utilization improved
to 25 percent. The 250 MHz MIPS R10000 with a full speed cache resulted in a further
utilization improvement to 29 percent. These applications use well-structured dense
linear algebra algorithms with vector sizes that allow multiple vectors to fit into cache.
Vendor optimized libraries for functions such as the fast Fourier transform are used to
increase processing efficiency.

Approved for public release; distribution unlimited 13

The issue identified as “yellow” in Figure 2 concerns the scale of some current and future
ISR applications. In some of today’s largest applications, special-purpose accelerators
must be combined with commodity HPCs to meet the operational processing throughput
requirements. This is expensive, but reduces the overall computer installation to a
practical size. Switching to all commercial processing is a future goal.

The group interviewed associated with the national missile defense area provides
scientific and technical intelligence to BMDO. Applications included assessing radar and
infrared signatures, computational aerodynamics, and modeling and simulation.
Commodity HPCs are providing the needed capability with many applications requiring
only a single processor or networks of loosely coupled workstations or small servers. The
author is also aware that the radar signal processing and control involved in missile
defense applications is being hosted on shared-memory commodity HPCs.

Finally, the group interviewed associated with the test and evaluation area effectively
uses commodity HPCs to implement models and simulations and to drive visualizations
for human-in-the-loop tests. Shared-memory is used with explicit threads (i.e., not
OpenMP). Tests require real-time updates and special reflexive memory technology is
used to support predictable shared-memory over a network. The only issue (“yellow”) is
that currently special-purpose sensor emulators are used and there could be potential cost
reductions and increased flexibility if these were replaced by HPCs.

Approved for public release; distribution unlimited 14

6. GENERAL FINDINGS
This section summarizes the general findings of the survey.

1. Legacy applications have migrated from vector supercomputers to commodity
HPCs using OpenMP (easy) or Message Passing Interface (difficult).

There is currently widespread use of portable software technology for achieving
parallelism by the national security community: Message Passing Interface (MPI) for
distributed memory and OpenMP for shared-memory multitasking. This is insulating
application codes from the vagaries of the HPC marketplace.

The appearance of increasingly powerful commodity HPCs that support multi-tasking
through OpenMP directives has made this approach attractive for a low to moderate
number of processors. Many users can quickly get speedup through the addition of
OpenMP compiler directives. This is providing an easy migration path from legacy
vector supercomputers. Support staff at the HPCMP facilities are using this approach to
cultivate new users. Finally, more sophisticated users are also programming shared-
memory systems with portable thread packages.

In contrast, moving from the shared-memory to the distributed-memory paradigm has
required multiyear software efforts involving significant investments. The DOD HPCMP
has supported a number of such conversions on the Common High Performance
Computing Software Support Initiative (CHSSI) program. Other government
organizations have done likewise (e.g., DOE and NASA).

2. Vector supercomputers process more efficiently than commodity HPCs.

There was a significant drop in sustained processor utilization when legacy vector
supercomputer codes were run on commodity HPCs because of the memory-processor
bottleneck of current microprocessors. Order of magnitude drops in the percentage of
peak processing rates were not uncommon: “50 percent to 5 percent.” Code restructuring
(to make compatible with caching) recovered only some of this loss for most
applications.

The efficiency of the “big-hitter” production codes being run at DOD HPC facilities is
difficult to assess because sustained processor utilization is not widely known. Most of
the users of third-party codes and many of the developers surveyed had no idea of their
code’s efficiency. The user community appears to be generally unaware of just what the
potential is for improving the value of the computing resources they use. Anecdotes
indicate that sustained processor utilization might be as low as 2 percent for some
complicated CFD or CSM applications.

For the sake of illustration, a modern 16-processor shared-memory parallel vector

supercomputer (peak 10 Gflop/s vector processors with 256 GB of memory) programmed
with compiler directives delivers 80 Gflop/s at a sustained processor utilization of 50

Approved for public release; distribution unlimited 15

percent. This is equivalent to the sustained performance of an 800-processor distributed-
memory commodity HPC (peak 1 Gflop/s microprocessors with 400 GB of memory)
programmed with message passing that is sustaining 10 percent of peak. The total cost of
ownership of these systems includes factors such as the programming complexity, power,
reliability, and space requirements in each case. Tradeoffs between these two alternatives
have not been made recently in the US because state-of-the-art vector supercomputers
have been unavailable over the last four years.

3. Most (big) applications scale well on commodity HPCs—provided the problems
decompose well.

To maintain performance for many applications, the size of the application must be
increased as the machine size is increased. This approach of scaled-problem speedup is
compatible with research applications where more resolution (hence bigger problem size)
is better. It is less applicable to operational situations where the point is to drive down the
time to solution for a fixed problem.

Parallel efficiencies based on scaled-problems speedup as high as 80 percent are often
attained on both vector supercomputers and commodity HPCs for applications that
involve straightforward domain decomposition methods. This measure of “efficiency”
should not be confused with the level of sustained performance discussed above. If single
sustained processor utilization is 10 percent, then a system with parallel efficiency of 80
percent is delivering 8 percent of the total peak processing potential of the machine.

Because of all the current MPI codes and their applicability to large problems,
commodity HPCs at DOD HPC facilities are a scare resource, and a significant issue is
the queuing delays required for access. Researchers routinely reduce the number of
processing nodes requested to increase overall response time.

4. Some applications scale poorly on commodity HPCs.

Applications that must access global memory in an irregular and unpredictable fashion
have the most trouble on today’s commodity HPCs. This kind of processing is essential
for cryptanalysis research. Computational fluid dynamics that use domain decomposition
where the grids or meshes are unstructured or are adapted during run time pose both
programming complexity and scaling issues. Some grid/mesh adaptations currently occur
on a single processor in the middle of a parallel run. Computational structural mechanics
involving complex dynamics such as when there are a lot of small pieces flying around
pose performance challenges. Finally, models that contain a lot of non-uniform physics
result in complicated load balance requirements.

5. Negative impact on research output in some cases—biggest loser is domain
researcher who is forced to program distributed-memory HPCs

The recent lack of a state-of-the-art vector supercomputer option in the United States has
meant entire scientific communities have had to switch their processing to distributed-

Approved for public release; distribution unlimited 16

memory commodity HPCs. The difficulty of message passing programming has meant
that researchers spend considerably more time than in the past on computer science rather
than on their science. The dilution of research and the opportunities that are being lost are
difficult to quantify across the board—the weather forecasting community seems to have
the clearest case in this regard. But, most scientific communities can correlate past
breakthroughs with increases in computing power, and so a situation where computing
tools are difficult to use or where they can only be used inefficiently is not a desirable
state of affairs.

Approved for public release; distribution unlimited 17

7. RECOMMENDATIONS
This section concludes with recommendations.

1. Assess the usefulness of Japanese vector supercomputers (first for R&D
applications).

The national security community should assess the usefulness of Japanese vector
supercomputers. Their potential for delivering higher processing efficiency with less
programming complexity addresses a number of issues identified by this survey, not to
mention the potential upside of any scientific breakthroughs that result. Price/
performance tradeoffs that include the total cost of ownership should be the guide in
making acquisition selections. The competition that this promotes could have the positive
effect of focusing US computer vendors on improving the efficiency of their systems.
The place to start is with non-mission-critical research applications that are characterized
by long lead times where the impact of a future lack of foreign availability is less severe.

2. Reach out to researchers through the use of OpenMP on shared-memory
systems—use MPI on distributed-memory systems as next resort.

The capability of today’s shared memory systems is such that they provide a substantial
entry-level HPC resource. For codes that contain loop level parallelism, speedup can be
easily achieved through the inclusion of OpenMP compiler directives. This is the
recommended first step before resorting to a more involved effort of switching to
distributed-memory message passing. The availability of more capable shared-memory
vector supercomputers could reduce the number of MPI conversions needed.

3. Promote flexibility through software that combines OpenMP and MPI and that
switches between vector and cache-based optimizations.

The most sophisticated development groups encountered during the survey have
maintained a single code base as the computing options have evolved. Today their codes
can be compiled to use OpenMP directives and/or MPI. Indeed, emerging clusters of
shared-memory servers suggest hybrid strategies that use both approaches during a single
run. In addition, these groups have maintained optimizations for both vector and cache-
based microprocessors in their code base. Such flexible coding strategies should be
encouraged as they provide the most options to respond to future developments in the
HPC marketplace. A good way to promote this is to provide funding to augment the less
computationally sophisticated research groups with computational science experts.

4. Establish a multifaceted R&D program to improve the productivity of high
performance computing for national security applications.

The national security community needs computers that work better than the commodity

HPCs it currently is using. Improvements in sustained processor utilization would make
current-sized HPCs more useful. Simpler software development approaches would make

Approved for public release; distribution unlimited 18

researchers and developers of operational systems more productive. Improvements in
both system performance and software productivity are needed without sacrificing the
current gains that have been made in software portability. A multi-faceted R&D program
focusing on algorithm, architecture, and software improvements is needed.

As a first step it is essential that a comprehensive assessment of current national-security
HPC software be conducted. This is needed to establish goals for improvement in
processing efficiency and to make wise investment decisions. Also, actual national
security research and operational applications of HPC should be selected to demonstrate
the impact of such an R&D program. These should be a combination of existing and
future applications with stressful HPC requirements.

In conclusion, the bottom line for the national security community reduces to the
interrelated issues of productivity and affordability. How productive are the
researchers/developers that write the high performance software? How productive
(efficient) are the HPCs that run the software? What does it cost? Included in the total
cost are the facilities and the operational risks associated with the reliability of larger
less-efficient installations. Perhaps the hardest cost to quantify are the “opportunities
lost” when domain researchers spend their time on complicated computer programming
rather than on their science.

Approved for public release; distribution unlimited 19

APPENDIX A

INTERVIEW QUESTIONS

Date:

Name:

Title:

Employer:

Phone:

Email:

Sponsor Name:

Sponsor Affiliation:

1. Personal Background
1.1. What is your current role?

1.2. Length of time in current position?

1.3. Length of time involved with high performance computing?

2. HPC Application Description

2.1. Describe your application. (Characterize it as: research and development, test and
evaluation, operational system, other.)

2.2. What is the national security significance of your application?

2.3. What are current “mission” requirements (e.g., problem size, timing) that force the
use of HPCs?

2.4. What are the future “mission” requirements (e.g., problem size, timing) that force the
use of HPCs?

3. Software Description

3.1. What is the name of the software you are using/developing?

3.2. Who or what organization developed the code you are using?

3.3. What are the inputs?

Approved for public release; distribution unlimited 20

3.4. What are the outputs?

3.5. What algorithm(s) is (are) implemented by the software?

3.6. Are there vectors involved?

3.7. How do you measure the computational complexity of the algorithm(s)?

3.8. If the software runs on more than one processor, how is parallelism achieved at the
algorithmic level?

3.9. Is the algorithm data-parallel?

3.10. Are your computational problems amenable to domain decomposition (can the
problem and memory be partitioned?) or are they dependent upon data located across
the entire computational domain or problem space?

3.11. What programming language is the software currently written in? In the future?

3.12. Are you satisfied with the performance of the compiler? How do you measure the
compiler’s performance?

3.13. Do you use a shared or distributed-memory programming model? Or a
combination of the two?

3.14. Is a compiler or are compiler directives used to parallelize the code? If so, do you
use or are you considering the use of OpenMP?

3.15. If message passing, do you use MPI? Two sided (e.g., send/receive)? One sided
(e.g., put/get)?

3.16. If message passing, do you use MPI collective operations or other previously
developed support for global data reorganizations (e.g. distributed matrix transpose)?

3.17. How would you characterize the communication “granularity” of your parallel
application (fine or coarse “grain”)? Explain.

3.18. How would you characterize the synchronization “granularity” of your parallel
application (fine or coarse “grain”)? Explain.

3.19. Do you use computational libraries? (E.g., vendor-proprietary math/signal
processing, LAPACK, SCALAPACK, ...).

3.20. Besides compilers and computation/communication libraries, what tools do you
use to develop and debug your code? Are you satisfied with these tools?

Approved for public release; distribution unlimited 21

3.21. How much time (roughly in percentages) do you spend on: (1) initial design, (2)
initial coding, (3) debugging, and (4) performance optimization.

3.22. How long does it take to develop your application software—the time to initial
useful results (roughly: days, weeks, months, years)?

3.23. Discuss the importance of ease-of-programming to your effort and the impact of
this factor on the selection of HPC architecture.
4. Typical Performance
4.1. On what computers do you run the software?
--What is the processor clock speed?
--What is flop/s rating of each processing node?

4.2. How many processors (or processing nodes) are typically used?

4.3. What is the largest number of processors ever used successfully on a single problem
instance?

4.4. What is the size of the input data?
4.5. What is the size of the output data?

4.6. Is problem size a variable (“bigger always better”) or does your mission application
fix it?

4.7. How long does a typical run of the software take for a problem instance?

4.8. Discuss the importance of time-to-solution in the use of your software.

4.9. Does some version of the problem run on a single processor? In core? Out of core?
4.10. What is the utilization of the floating point unit(s) on a single processor?

4.11. Have you benchmarked the software on an increasing number of processors?
4.12. What kinds of parallel speedups do you achieve?

4.13. Is there a point where performance plateaus? Gets worse?

4.14. What are the algorithmic issues that inhibit scalability and performance (e.g.,
surface to volume ratio of domain, irregular accesses to global memory, etc.)?

Approved for public release; distribution unlimited 22

4.15.

Do you have benchmark results that compare versions of the code that use
different programming approaches on the same machine? (E.g., running a message
passing version on an SMP for which you also have compiler-based results.)

5. Portability and Porting

5.1

5.2.

5.3.

5.4.

5.5.

5.6.

What architectural classes of HPCs does your software run on? (SMPs, DSM, MPPs,
vector, parallel vector, scalable vector, commodity clusters, high-end clusters, etc.)

Are you contemplating a port to a new architectural class in the future? For example
from shared memory to a distributed memory/cluster architecture?

In these porting exercises, is the same application software just recompiled (e.g.,
using message passing on an MPP and an SMP)? Or are their different versions of
the software (including even different algorithms) for different HPC types?

If the algorithm has changed because of porting activities, please explain.
If you have been involved in porting activities, how long have they taken (days,
weeks, months, years). Distinguish between porting between or within architectural

classes.

Do you have benchmark results that compare the performance of the software
between architectural classes? If so, what are your conclusions?

6. Current Architectural Limitations

6.1.

6.2.

6.3.

6.4.

What are the architectural features of an HPC system that have the greatest impact on
the performance of your software? Why?

Do your algorithms have data-level parallelism but limited data reuse (yielding poor
cache performance in microprocessors)?

Do your algorithms require irregular access to a large amount of data (need zero-wait
state, non-cached memory)?

What architectural improvements would have the biggest impact on performance.
For example:

— Processor floating-point speed

— Processor integer speed

— Cache size

— Processor access to “local” memory (latency and bandwidth)
— Processor access to “global” memory (latency and bandwidth)
— Uniform memory access time across global memory

Approved for public release; distribution unlimited 23

— Amount of memory per processing node

— Interconnect latency

— Interconnect bandwidth

— Interconnect topology

— Interconnection network interface directly to system bus (vs. I/0 bus)
— Access (latency and/or bandwidth) to secondary storage

7. Documentation

What documentation is available on your software, development techniques, processing

performance, and verification process used to confirm the validity of the approach?

8. Additional Applications

8.1. In addition to the work cited above, what other HPC applications are envisioned
using the processing techniques being developed by you or your group? Are there
any applications outside the national security area? Government? Commercial?

9. Additional Sources

9.1. Who do you know that really understands the interplay between HPC architecture
and the performance of their application code?

9.2. Who do you know that has ported their application(s) across multiple HPC
architectures

9.3. Who do you know that has benchmarked their application code across different HPC
architectures?

Approved for public release; distribution unlimited 24

APPENDIX B

BACKGROUND INFORMATION OF APPLICATION ASSESSMENTS

This appendix contains additional background information on each of the 10 application
areas surveyed:

For each application area, a quad chart is presented describing the organizations and
number of people interviewed, the national security significance of the application,
details on the software discussed, and finally the assessment with individual issues

1
2
3
4
5
6.
7
8
9
1

. Operational weather and ocean forecasting

. Planning activities for dispersion of airborne/waterborne contaminants
. Engineering design of large aircraft, ship, and structures

. Weapon (warheads and penetrators) effect studies

. Improved armor design
Cryptanalysis

. Survivability/stealthiness design
. Intelligence, reconnaissance, and surveillance
National missile defense
0. Test and evaluation

itemized. In the assessments, green indicates that commodity HPCs are providing needed

capability. Yellow indicates that there are significant issues with the use of commodity
HPCs, but generally they are providing the needed capability. Red indicates a serious

problem with the use of commodity HPCs.

O i g # le)
Fleet Numeric Meteorology and
Oceanography (FNMOC), Monterey, CA (3)

Naval Meteorology & Oceanography
Command, Stennis, MS (1)

Naval Research Laboratory, Monterey, CA
(®)

Naval Research Laboratory, Stennis, MS (1)

Army Corp of Engineer R&D Center,
Vicksburg, MS (1)

Naval Research Laboratory, Wash DC (2)

©Weather and Ocean Forecasting

National Security Sianifi

FNMOC and NAVOceanO provide
operational weather and ocean wave
forecasting to services multiple times a
day on a daily basis

For example, accurately predicting the
course of typhoons has safety and cost
implications for the surface Navy

NRL and ACERDC do the research and
development of the models that feed the
operational systems

Software

NOGAPS global weather prediction uses
MPI-2 put/get. Processor utilization of ~40%
on C90s has dropped to ~14% on SGI O3K,
(6 proc. C90 = 20 proc. O3K), scales well
COAMPS regional weather prediction is a
more complicated nested grid model. Use a
hybrid OpenMP and MPI approach,
although MPI on O3K is most used/tested
WAM wave modeling uses OpenMP on SV1
and O3K (MPI failed). Scales to 24 nodes.

Assessment

FNMOC is replacing 16 proc. and 8 proc.
Cray C90s with 128 proc. SGI O3K in May
2001, add’l 512 proc. O3K summer 2001
Dilution of effort: weather researchers now
content, but transitioning from vector to
commodity HPCs was a difficult multi-year
undertaking--evolving will continue to cost
Results are not state of the art--commodity
HPCs put USA at a disadvantage relative to
Europeans--“five years behind”

Approved for public release; distribution unlimited

25

@Dispersion of Airborne/Waterborne Contaminants

sensitive to cache versus memory size in
local domain--communication overhead

Would not be able to support a low-latency
crises requirement at current resolution

rganization | National ri ignifican
® SAIC Center of Atmospheric Physics, @ Predict the dispersion of hazardous
McLean, VA (4) aerosols and gasses in the atmosphere
® Army Corp of Engineer R&D Center, ® Support military operation planning and
Vicksburg, MS (1) execution, intelligence gathering, counter
terrorism, and treaty monitoring
@® Support DTRA and SOCOM
@ Capability originally developed in response
to Gulf War studies
Software Assessment
® OMEGA regional weather prediction (@© Ease of programming important to this
software uses adaptive unstructured group, but code complexity meant OpenMP
horizontal grid, sequential adaptation is performed badly and so switched to MPI
performed 10'1.5 t|me§ per 10 !\our run. @ Run on 16 proc. 02K and SV1 to meet 10
Structured Yertncal g'”d vectonzes' . hour planning cycle; to scale problem
® Uses MPI with domain decomposition would only require bigger commodity HPC
® Irregular accesses to memory means .

limits scaling

Following the SV-2 for DTRA. Talking to
Cray about access to NEC SX-5

@Engineering Design of Structures

0 i s (# le)
Army Research Lab, Aberdeen, MD (1)
NAVAIR, Pax River (2)

SAIC Laboratory for Applied Computational
Science, McLean, VA (2)

George Mason University, Fairfax, VA (1)

National Security Sianifi

Computational structural mechanics used
to do forensic analysis after terrorist bomb
attacks and predictive analysis for the
design of safer military and embassy
structures

Computational fluid dynamics model flow
fields around complete aircraft--augment
wind tunnel experiments to reduce costs
Providing acquisition support for recce
pods on the F/18 fighter program.

Software

PARADYN CSM unstructured grid, MPI: 90%
of applications give almost linear scaled
speedup up to 512 processors. However
many small fragments flying around require
global communications and causes less
than linear speed up for the other 10%
FEFLOW CFD adaptive mesh, MPI or
OpenMP, optimized for vector or cache,
processor utilization: 2%- 10% on
commodity HPCs versus 50% on vector

Assessment

Users of third party CSM/CFD MPI codes
are major consumers of cycles at HPCMOD
facilities, limited by access/queuing delays
Developers of complex code unhappy with
programming complexity of MPI and
performance of commodity HPCs; Seeking
foreign access to Japanese vectors

All codes discussed have been converted
through domain decomposition to use MPI
over 2 - 3 year period

Approved for public release; distribution unlimited

26

©Weapon (Warhead/Penetrators) Effects Studies

rganization |
® Army Research Lab, Aberdeen, MD (3)

National ri ignifican
Computational mechanics used to
understand complex projectile-target
interactions to develop advanced
survivability and lethality technologies.

Computational fluid dynamics for modeling
flight dynamics of missiles and projectiles
Use computer models to augment
experimentation to reduce costs and
explore new concepts that would be
difficult to test

Software

® CTH multi-dimensional multi-material finite
volume shock wave propagation CM code
from Sandia; structured 3D mesh, uses
domain decomposition and MPI. Always
scale problem size to fill biggest machine
they can get time on. Can run for months!

® Zonal Navier-Stokes Flow (ZNSFlow) CFD.
Structured multi-block. Uses shared
memory and OpenMP on SMPs and SGI
02K/0O3K up to 64 processors. Much work
optimizing sequential version.

©Improved Armor Design

0 izations (# le)

® Army Research Lab, Aberdeen, MD (2)

Assessment

Users of third party CM MPI codes are
major consumers of cycles at HPCMOD
facilities, limited by access/queuing delays

In general, users of third party codes
running on commodity HPCs lack
knowledge of their efficiency and how
much “grand challenge” computations that
are taking months could be shortened by
more compatible vector architectures that
would deliver higher processor utilization

National Security Sianifi

Computational mechanics used to
understand complex projectile-target
interactions to develop advanced
survivability and lethality technologies.

Use computer models to augment
experimentation to reduce costs and
explore new concepts that would be
difficult to test

Software

® CTH multi-dimensional multi-material finite
volume shock wave propagation CM code
from Sandia; structured 3D mesh, uses
domain decomposition and MPI. Always
scale problem size to fill biggest machine
they can get time on. Can run for months!

Assessment

Users of third party CM MPI codes are
major consumers of cycles at HPCMOD
facilities, limited by access/queuing delays

In general, users of third party codes
running on commodity HPCs lack
knowledge of their efficiency and how
much “grand challenge” computations that
are taking months could be shortened by
more compatible vector architectures that
would deliver higher processor utilization

Approved for public release; distribution unlimited 27

@ Cryptanalysis

rganization |

® National Security Agency, Fort Meade, MD

®)

National ri ignifican
Decrypting secrecy codes that are used to
hide information over various transmission
channels

Both an R&D and operational aspect to this
activity

Software

® Combination of small quickly evolving

exploratory software programs for research
and highly optimized utility programs for
research and operations

Often researchers will use a single
processor and all the memory available.
OpenMP on shared memory preferred

MPI is not used for distributed memory
because of performance. Use vendor
shmem library on T3E. Currently exploring
the use of IDA’s UPC extensions of C

0 izations (# le)

® Air Force Research Laboratory, Dayton, OH

(1)

® Northrop Grumman, Los Angeles, CA (1)

Assessment

Need systems that provide extremely fast
access to extremely large global
memories--synonymous in the past with
vector supercomputers

Any programming model other than shared
memory will likely result in dilution of
research effort--difficult to quantify impact
There are a limited number of cryptanalytic
apps that require no network traffic and so
are compatible with commodity HPCs

@Survivability/Stealthiness Design

National Security Sianifi

Computational electromagnetics for radar
cross-section/signature prediction
Perform research into reducing the radar
signatures of airplanes such as the JSF
and F22

Provide technical support to acquisition
activity

Software

XPATCH code does ray tracing and can be
parallelized perfectly. Not an HPC capability
problem

SWITCH example of method of moments
approach that reduces to directly solving
dense systems of linear equations

This can be done extremely well on
commodity HPCs (cf. Top 500 benchmark)
using highly optimized MPI or threads: 90%
processor utilization in core and 80% out of
core on the SGI O3K for example!

Assessment

The current approach to this application
reduces to implementing a highly
structured O(n”3) algorithm which can be
computed extremely well on all available
HPC architectures

Current DARPA emphasis is on developing
new fast O(n”2) iterative solution
algorithms that are less memory intensive.
This will allow substantial increases in
model resolutions but raise numerical and
architectural issues

Approved for public release; distribution unlimited

28

@Intelligence, Surveillance, and Reconnaissance
rganization | National ri ignifican

® Northrop Grumman, Baltimore, MD (1) ® Processing the outputs of various types of
@ Signal processing site (4) sensors to produce battlespace situation

awareness or other actionable intelligence
Target cueing, aided target recognition,
and other special exploitation products
These operational applications have to
meet throughput and latency requirements
as part of a larger system

There also may be size, weight, power
constraints

Software

® U2 synthetic aperture radar image

formation ported from a Cray YMP to SGI
Power Challenge (R8000), 8 processor
utilization dropped from 50% to 16%. The
195MHz R10000 with a 2/3 speed cache
improved this to 25%. The 250MHz R10000
has a full speed cache and the utilization is
now 29% (All use vendor optimized FFT)

® This software became the Common
Imagery Processor that is deployed at
tactical ground stations. Uses OpenMP.

®National Missile Defense

® Missile, Space, Intelligence Command,
Huntsville, Al (5)

Assessment

Well structured linear algebra algorithms
with vector sizes that allow multiple vectors
to fit into cache result in above average
processor utilization on commodity HPCs.
Some limited global communication
required--not as significant a factor
Processing requirements can get very large
in certain instances and the fallback today is
to add special purpose accelerators to
commodity HPCs. Possible application for
scalable vector machine if affordable

National Security Sianifi

Provide scientific and technical intelligence
to a variety of customers including BMDO
Understand the performance of and assess
the threat of surface-to-air missiles,
ballistic missiles, anti-tank guided systems,
directed energy weapons

Applications include RF signatures, IF
signatures, computational aerodynamics,
and modeling and simulation (one-on-one
engagements)

Software

® By and large MSIC uses their HPC
resources for throughput. Jobs are
scheduled onto single processors. They
mostly use their 4-processor SV1 in this
fashion. They don’ t support MPI.

® TIGER CFD code to be applied to study
spinning missile tails in the future. OpenMP
and can switch between cache and vector
optimizations. Steady state solution. Scales
up to 12 proc. Utilization for 8 proc.: SV1:
O2K=5.6:1; SV1:SUN420RS =3.7 : 1

Assessment

MSIC current and future HPC requirement
appear to be easily met with commodity
HPCs, in fact with an inexpensive LINUX
cluster (e.g., to run XPATCH)

Approved for public release; distribution unlimited

29

®Test and Evaluation

rganization |

® Naval Air Warfare Center, Pax River (2)

National ri ignifican
Modeling and simulation as part of test and
evaluation

Computer simulation as part of a
integrated test facility containing sensor
emulators, human interfaces, and a system
under test

Reducing the cost of test and evaluation
through HPC plus simulating test
scenarios that would be difficult to
replicate in reality

Software
Use shared memory commodity HPCs to
drive visualization for human-in-the-loop
simulations
Use threads rather than OpenMP
“Real time” application and special
reflective memory support (SCRAMNET) is
used
NUMA on Origin 2000 can introduce jitter if
threads are not pinned to processors.

Assessment

Commodity HPCs providing needed
modeling, simulation, and visualization
support

Could potentially reduce costs further and
increase flexibility by replacing sensor
emulators with programmable HPCs

Approved for public release; distribution unlimited

30

APPENDIX C

STUDY MEMORANDUM

OFFICE OF THE SECRETARY OF DEFENSE

1000 DEFENSE PENTAGON
WASHINGTON, DC 20301-1000

MAR 23 200/

MEMORANDUM FOR SECRETARIES OF THE MILITARY DEPARTMENTS
DIRECTOR, BALLISTIC MISSILE DEFENSE ORGANIZATION
DIRECTOR, DEFENSE INTELLIGENCE AGENCY
DIRECTOR, DEFENSE THREAT REDUCTION AGENCY
DIRECTOR, NATIONAL IMAGERY AND MAPPING AGENCY
DIRECTOR, NATIONAL RECONNAISSANCE AND MAPPING

AGENCY '

DIRECTOR, NATIONAL SECURITY AGENCY

SUBJECT: Survey of High Performance Computing Architecture Requirements

The Department of Defense is analyzing requirements of various features of high
performance computing architectures that address our national security software applications.
We would like to conduct interviews with key software developers and users of high
performance computing within your organizations. Each Service and Agency is asked 1o provide
a point of contact to facilitate these interviews. These interviews will be conducted at the
appropriate security level to analyze user requirements.

Dr. Charles J. Holland will be our point of contact for this activity. Please cmail or phone

your responses to him by March 28, 2001 at chagles holland @osd.mil, 703-695-0598. We
expect these interviews to occur during the period of April 2 through April 13, 2001.

GO0 2

Dave Oliver Linton Wells I
Principal Deputy Under Secretary Principal Deputy Assistant Secretary
of Defense (AT&L) of Defense (C3I)

FEDERAL AECYCLING PROGRAM ﬁ PRINTED ON RECTCLED FAFER

Approved for public release; distribution unlimited 31

